$[{Li_2(Me_3SiCCN)}_{12}(Et_2O)_6(C_6H_{14})],$ Kristallstruktur mit dem Trimethylsilylacetonitril-Dianion

Wolfgang Zarges, Michael Marsch, Klaus Harms und Gernot Boche*

Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Straße, D-3550 Marburg

Eingegangen am 25. Januar 1989

Key Words: Dilithium trimethylsilylcyanomethanediide

Deprotonierung von Trimethylsilylacetonitril (1) entweder mit zwei Moläquivalenten *n*-Butyllithium oder mit zwei Moläquivalenten Lithium-diisopropylamid in Ether/Hexan führt zum "Dianion" Li₂(Me₃SiCCN) (2), das aus dieser Lösung als $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ auskristallisiert. Zwölf "Dianionen" bilden ein Aggregat mit einem kristallographischen Inversionszentrum. Sechs Ether-Moleküle (drei pro asymmetrische Einheit) koordinieren mit den Li-Atomen. Ein Molekül Hexan cokristallisiert außerhalb dieses Aggregats. Es gibt drei verschiedene "Dianion"-Gruppen, die sich in der Anzahl ihrer N-Li- und C-Li-Kontakte unterscheiden. Die Festkörperstruktur des Dilithionitrils $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ unterscheidet sich wesentlich von den Festkörperstrukturen von Monolithionitrilen.

Während Festkörperstrukturen von Natrium-1) und Kalium-Derivaten²⁻⁴⁾ mehrfach Akzeptor-substituierter Nitrile bereits um 1970 bekannt geworden sind, konnten solche von lithiierten "normalen" Nitrilen erst in jüngster Zeit aufgeklärt werden⁵⁻⁸⁾. Die Vermutung, daß es auch α,α -dimetallierte Nitrile gäbe, erwies sich nach neueren Untersuchungen von Crowley, Leach, Meth-Cohn und Wakefield⁹⁾ zumindest bei Phenylacetonitril als nicht richtig. Auch bei 1-Naphthylacetonitril¹⁰, 3,4-Dimethoxyphenylacetonitril¹¹⁾ und 3-Butennitril¹²⁾ liegen nach der Umsetzung mit zwei Moläquivalenten Base wohl nur monometallierte Nitrile vor, wenngleich die anschließende Umsetzung mit zwei Moläquivalenten eines Elektrophils wie z.B. Chlortrimethylsilan das Elektrophil zweimal in das Nitril eintreten läßt. Ein disilyliertes Produkt kann also auch auf die rasche Sequenz - Silylierung des "Monoanions", Metallierung, Silylierung - zurückzuführen sein. Im Gegensatz dazu läßt sich Trimethylsilylacetonitril (1) mit zwei Moläquivalenten n-Butyllithium oder Lithium-diisopropylamid (LDA) in die Dilithium-Verbindung Li₂(Me₃SiCCN) (2) überführen, wie die Kristallstruktur von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ zeigt, über die wir im folgenden berichten. Gornowicz und West hatten 2 bereits 1971 mit tert-Butyllithium als Base hergestellt 13,14).

Bislang ist erst eine Festkörperstruktur einer α, α -Dilithium-Verbindung bekannt geworden^{15–17)}.

Kristallstruktur von [(2)₁₂(Et₂O)₆(C₆H₁₄)]

Während sich die Kristallstrukturen monolithiierter Nitrile vor allem dadurch auszeichnen, daß Li nur an das N-

$[{Li_2(Me_3SiCCN)}_{12}(Et_2O)_6(C_6H_{14})], Crystal Structure with the Trimethylsilylacetonitrile Dianion$

Deprotonation of trimethylsilylacetonitrile (1) with either two molar equivalents of *n*-butyllithium or two molar equivalents of lithium diisopropylamide in ether/hexane leads to the "dianion" $Li_2(Me_3SiCCN)$ (2) which crystallizes from this solution to give $[(2)_{12}(Et_2O)_6(C_6H_{14})]$. Twelve "dianions" form an aggregate with a crystallographic inversion center. Six ether molecules (three per asymmetric unit) are coordinating to Li atoms. One molecule of hexane cocrystallizes outside this aggregate. There are three groups of "dianions" differing in the number of their N-Li and C-Li contacts. The solid-state structure of the dilithionitrile $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ differs significantly from the solid-state structures of monolithionitriles.

Atom des Nitril-Anions koordiniert ist^{5,6,8)} – lediglich in einem Lithium-cyclopropylnitril hat Li auch noch mit dem anionischen C-Atom Kontakt⁷⁾-, ist Li₂(Me₃SiCCN) (2) im Kristall zu einem Dodecamer [(2)₁₂(Et₂O)₆(C₆H₁₄)] mit zahlreichen Li-N- und Li-C-Kontakten aggregiert, wobei sechs Diethylether-Moleküle und ein Hexan-Molekül mit auskristallisieren. Bezeichnenderweise ist auch das "Sulfondianion" [{Li₂(Me₃SiCSO₂C₆H₅)}₆(Li₂O)(thf)₁₀] hoch aggregiert¹⁵⁾. Abb. 1 zeigt eine SCHAKAL-Darstellung von [(2)₁₂(Et₂O)₆(C₆H₁₄)] (in Ausschnitten).

Obwohl Abb. 1 wegen der vielen Atome keine detaillierten Einblicke gestattet, wird folgendes sichtbar: in der inneren Sphäre der nach außen durch die 36 Methyl-Gruppen (12mal Me₃Si-) und 12 Ethyl-Gruppen (6mal Et₂O) hydrophob abgeschirmten Aggregatkugel findet man vor allem Liund N-Atome, wobei Li tetraedrisch von N umgeben ist. Nach außen hin sind die Li-Atome trigonal konfiguriert, wobei gemischte Koordination (C,N,O) auftritt. Die Li-Atome werden dort durch die Anhäufung von Me₃Si-Gruppen und Ether-Moleküle stark abgeschirmt.

Auf Grund ihrer unterschiedlichen Li-Koordinationen ergeben sich 6 verschiedene, symmetrieunabhängige "Dianionen" in $[(2)_{12}(Et_2O)_6(C_6H_{14})].$

3A-C: 2 Li am anionischen C-, 3 Li am Nitril-N-Atom

Von dieser Sorte findet man die drei "Dianionen" 3A,Bund C, die sich im wesentlichen in der Konformation der Me₃Si-Gruppen um die Me₃Si-C-Achse voneinander unterscheiden. Abb. 2 zeigt 3A-C; Tab. 1 gibt relevante Bindungslängen, -winkel und Torsionswinkel wieder.

Chem. Ber. 122 (1989) 1307-1311 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009-2940/89/0707-1307 \$ 02.50/0

Abb. 1. Kristallstruktur von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$, wobei aus Gründen der Übersichtlichkeit die 36 Methyl-Gruppen an den 12 Si-Atomen der Me₃Si-Einheiten und die 12 Ethyl-Gruppen an den 6 O-Atomen der Diethylether-Moleküle weggelassen wurden; auch auf die Wiedergabe des Hexan-Moleküls, das außerhalb der Aggregatkugel liegt, wurde verzichtet

Tab. 1. Bindungslängen [pm], -winkel [°] und Torsionswinkel [°] in 3A - C

(PhCHCN)	$]_2$ [117.4(7)	pm] [»] . Die	$c - SiMe_3$ -Achse	ist
119.6° (Mit	telwert) von	der C-C-A	chse weggebogen.	

3 A :	N1-Li6	194.6(9)	N1-C2-C1	174.9(5)
	N1-Li8	206.6(7)	C2-C1-Si1	117.9(3)
	N1-Li11	199(1)		• •
	C1-Li7	214.4(8)		
	C1-Li10	214(1)	C2-C1-Si1-C4	99.0(4)
	N1-C2	122.9(6)		
	C1-C2	131.9(6)		
	C1-Si1	180.7(5)		
	Sil-C4	186.1(7)		
3B :	N6-Li5	205.7(7)	N6-C27-C26	175.1(5)
	N6-Li11	197.7(9)	C27-C26-Si6	116.0(3)
	N6-Li12	196(1)		
	C26-Li2	212.8(9)		
	C26-Li4	213.8(8)	C27-C26-Si6-C30	144.6(4)
	N6-C27	123.7(8)		
	C26-C27	131.9(9)		
	C26-Si6	180.4(5)		
	Si6-C30	186.6(7)		
3C :	N5-Li5	200(1)	N5-C22-C21	173.0(5)
	N5-Li8	200.5(8)	C22-C21-Si5	125.0(4)
	N5-Li9	190.9(7)		
	C21-Li6	213.8(9)		
	C21-Li12	213(1)	C22-C21-Si5-C25	88.9(5)
	N5-C22	123.9(5)		
	C21-C22	131.8(6)		
	C21-Si5	179.6(5)		
	Si5-C25	187.3(7)		

Tab. 2. Bindungslängen [pm], -winkel [°] und Torsionswinkel [°] in 4A und B

				N. 017 016	176 2(4)
4A	:	N4-Lil	203.3(7)	N4-C17-C16	1/6.3(4)
		N4-Li4	201(1)	C17-C16-Si4	120.6(3)
		N4-Li5	210.8(8)		
		C16-Li3A	213.4(9)		
		C16-Li9	231(1)	C17-C16-Si4-C18	137.9(5)
		C16-Li10A	228.2(9)		
		N4-C17	123.4(6)		
		C16-C17	133.3(7)		
		C16-Si4	180.2(4)		
		S14-C18	181.8(6)		
4.77		NO 141	202(1)	N3-C12-C11	175 1(6)
4.0	•	NO LIT	203(1)		122 6(4)
		N3-L1/A	197.2(8)	012-011-513	122.0(4)
		N3-L18A	214.1(8)		
		C11-Li2	230.8(9)		
		C11-Li3	214(1)	C12-C11-Si3-C15	53.5(5)
		Cll-Li9A	231.9(9)		
		N3-C12	122.8(6)		
		C11-C12	133.7(6)		
		C11-Si3	180.7(5)		
		Si3-C15	183.8(7)		

4A und 4B: 3 Li am anionischen C-, 3 Li am Nitril-N-Atom

Die Nitril-Achse C-C-N ist mit 174.3° (Mittelwert) nahezu linear; der C-C-Abstand ist mit 131.9 pm (Mittelwert) deutlich kürzer als derjenige im "Monoanion" [Li(tmeda)-(PhCHCN)]₂ [138(2) pm]⁵; hingegen ist der C-N-Abstand mit 123.5 pm (Mittelwert) deutlich länger als in [Li(tmeda)-

In Abb. 3 sind die beiden "Dianionen" **4A** und **4B** dargestellt, während Bindungslängen, -winkel und Torsionswinkel in Tab. 2 wiedergegeben werden.

Beim Vergleich von 4A und 4B mit 3A-C fällt insbesondere der größere C-Li-Abstand bei den 3fach Li-koordinierten 4A und 4B [Mittelwerte: 4A (224.2 pm), 4B

Abb. 2. Me₃SiCCN-,,Dianionen" 3A-C, Ausschnitt aus der Kristallstruktur von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$

(225.6 pm)] gegenüber dem C-Li-Abstand bei den 2fach koordinierten 3A - C [Mittelwerte 3A (214.2 pm), 3B (213.3 pm), 3C (213.4 pm)] auf. Dies entspricht der allgemeinen Beobachtung, wonach höhere Koordination zu längeren Abständen führt¹⁶. Ansonsten sind die Bindungsverhältnisse in den beiden "Dianion"-Gruppen vergleichbar. Der wesentliche Unterschied zwischen 4A und 4B liegt wieder in der Konformation um die Me₃Si-C-Bindung.

Abb. 3. Me₃SiCCN-"Dianionen" **4A** und **B**, Ausschnitt aus der Kristallstruktur von [(2)₁₂(Et₂O)₆(C₆H₁₄)]

5: 4 Li am anionischen C-, 1 Li am Nitril-C- und 4 Li am Nitril-N-Atom

Das am höchsten Li-koordinierte "Dianion" aus der Struktur von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ ist 5, wie Abb. 4 zeigt; die wichtigsten Bindungsparameter enthält Tab. 3.

Abb. 4. Das Me₃SiCCN-"Dianion" 5, Ausschnitt aus der Kristallstruktur von [(2)₁₂(Et₂O)₆(C₆H₁₄)]

Tab. 3. Bindungslängen [pm], -winkel [°] und Torsionswinkel [°] in 5

-				
5:	N2-Li1	203.9(8)	N2-C7-C6	178.3(6)
	N2-LilA	202.7(8)	C7-C6-Si2	153.7(4)
	N2-Li5	226.8(8)		• •
	N2-Li8	225(1)		
	C6-Li2	231(1)	C7-C6-Si2-C10	114.4(9)
	C6-Li3	212.2(9)		. ,
	C6-Li10	234(1)		
	C6-Li11	243 (1)		
	C7-Li11	227.0(9)		
	N2-C7	125.1(5)		
	C6-C7	129.3(6)		
	C6-Si2	179.7(4)		
	Si2-C10	186.0(6)		
	·			

5 unterscheidet sich in mehreren Punkten von den beiden anderen "Dianion"-Gruppen. So sind die vier N2-Li-Abstände im Mittel länger (Mittelwert: 214.5 pm) als die entsprechenden in 3A-C (Mittelwert: 199.0 pm) und 4A, B(Mittelwert: 204.9 pm), wo jeweils nur Dreierkoordination vorliegt. Der Mittelwert der vier C-Li-Bindungen ist mit 230.1 pm auch länger als die entsprechenden Abstände in den 3fach koordinierten 4A,B (Mittelwert 224.9 pm) und in den 2fach koordinierten 3A - C (Mittelwert 213.6 pm). Außergewöhnlich ist die Position von Li11, das den "Nitril"-Kohlenstoff C7 und den "anionischen" Kohlenstoff C6 überbrückt, wobei der Abstand C7–Li11 [227.0(9) pm] deutlich kürzer ist als der C6-Li11-Abstand [243(1) pm]. Während der N2-C7-Abstand mit 125.1(5) pm nur unwesentlich um ca. 1-2 ppm verlängert ist, fällt die Verkürzung bei C7 - C6 [129.3(6) pm] gegenüber den entsprechenden Bindungen in 3A - C (Mittelwert 131.9 pm) und 4A, B (Mittelwert 133.5 pm) deutlicher (ca. 3-4 pm) aus. Eine Erklärung hierfür könnte die relative Anhäufung von Li bei 5 im Bereich von N2 und C7 sein, so daß eine Keteniminat-ähnliche Struktur 5a gegenüber 5b begünstigter ist. Zum Vergleich sind die Abstände im Ketenimin $6^{(9)}$ angegeben.

Bemerkenswerterweise ist der Winkel C7-C6-Si2 in 5 mit 153.7(4)° deutlich größer als die entsprechenden Winkel in 3A-C (Mittelwert: 119.6°) und 4A,B (121.6°).

Die Kristallstruktur von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ bestätigt frühere Untersuchungen von Gornowicz und West. Diese Autoren hatten die Herstellung des "Dianions" Li₂(SiMe₃-CCN) (2) aus Trimethylsilylacetonitril (1) und *tert*-Butyllithium beschrieben¹⁴.

Die Entstehung von 2 wurde über die Bildung von 1.9 Moläquivalenten Isobutan und über die Umsetzung von 2 mit Chlortrimethylsilan zum Tris(trimethylsilyl)ketenimin (7) und zum Tris(trimethylsilyl)inamin (8) nachgewiesen. Auf ähnliche Weise wurde von Gornowicz und West Dilithiumcyanmethandiid Li₂(CHCN) hergestellt und seine Entstehung nachgewiesen, so daß an der Existenz auch dieses α, α dilithiierten Nitrils wohl kein Zweifel besteht. Eine Kristallstruktur steht allerdings noch aus.

NMR-spektroskopische Untersuchungen an $[D_8]$ THF-Lösungen von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$ führten bislang zu keiner eindeutigen Aussage. So läßt sich zwar das "Monoanion" Li(Me₃SiCHCN) NMR-spektroskopisch eindeutig charakterisieren²⁰⁾. Das ¹³C-NMR-Spektrum des "Dianions" zeigt jedoch lediglich ein breites Signal im Bereich der Trimethylsilyl-Gruppen. Die ⁶Li- und ²⁹Si-NMR-Spektren sind sehr komplex, so daß wir aus ihnen auch keine strukturellen Informationen erhalten konnten. Die ⁶Li-⁶Li-Austauschspektroskopie weist auf einen Austausch von ⁶Li-Kernen hin, so daß die NMR-spektroskopischen Befunde in Lösung insgesamt auf Austauschphänomene innerhalb eines Aggregats zurückzuführen sein könnten.

Der Deutschen Forschungsgemeinschaft, Schwerpunktprogramm "Reaktionssteuerung durch nichtkovalente Wechselwirkungen: Quantifizierung des Einflusses auf Struktur, Reaktivität und Selektivität", sowie dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeiten. W. Z. bedankt sich für ein Graduierten-Stipendium.

Experimenteller Teil

Trimethylsilylacetonitril (1): Zu 36.0 g (0.33 mol) Chlortrimethylsilan und 38.0 g (0.58 mol) Zink-Staub in 400 ml trockenem THF tropfte man unter kräftigem Rühren und leichtem Erwärmen 21.9 g (0.29 mol) Chloracetonitril (gelöst in 20 ml THF). Nach beendeter Zugabe erhitzte man noch 12 h zum Rückfluß und filtrierte dann die Reaktionsmischung auf 300 ml ges. NH₄Cl-Lösung. Man extrahierte mit Diethylether, wusch die vereinigten organischen Extrakte mehrfach mit NH₄Cl-Lösung und Wasser und trocknete mit MgSO₄. Destillation nach Entfernung des Lösungsmittels ergab 22.3 g (70%) 1 vom Sdp. 50–55°/17 Torr (Schmp. 11°C). – ¹H-NMR (CDCl₃): $\delta = 1.43$ (s, 2H, CH₂), 0.06 (s, 9H, SiMe₃). – ¹³C-NMR (CDCl₃): $\delta = 128.81$ (s, $C \equiv N$), 4.73 (t, CH₂), 1.98 (q, SiMe₃). Alle folgenden Operationen wurden in geschlossenen Appara-

turen unter Argon und gereinigten Lösungsmitteln durchgeführt.

Dilithium-trimethylsilylcyanmethandiid (2): Bei -78 °C tropfte man zu 2.2 Moläquiv. einer in situ hergestellten Lösung von Lithium-diisopropylamid in Ether 1.0 Moläquiv. 1, oder man legte 1 in Ether vor und versetzte mit 2.2 Moläquiv. *n*-Butyllithium in *n*-Hexan (-78 °C). Danach ließ man die Reaktionsmischung langsam auf Raumtemp. erwärmen.

 $[(2)_{12}(Et_2O)_{\delta}(C_{\delta}H_{14})]$: 200 mg (1.75 mmol) 1 wurden in 2 ml *n*-Hexan/1 ml Et₂O vorgelegt und bei -78 °C langsam mit 2.2 ml einer 1.7 M Lösung von *n*-Butyllithium in *n*-Hexan versetzt. Einkristalle erhielt man nach mehrtägigem Stehenlassen der Lösung bei -15 °C.

Tab. 4. Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} [Å²] für **2**, $U_{eq} = 1/3 \sum_{i,j} (U_{i,j} \cdot a_i^* \cdot a_j \cdot \mathbf{a}_i \cdot \mathbf{a}_j)$

				 ,
Atom	x/a	у/b	z/c	Ueq
·				
Sil	0.1335(1)	0.1914(1)	0.75445(8)	0.0439(5)
S12 Si2	-0.1124(1)	0.045/(1)	0.83361(8)	0.0410(5)
515 Si4	0.2421(1)	-0.3997(1)	0.38332(8) 0.4481(1)	0.0456(5)
Si5	0.4195(1)	-0.4354(1)	0.8133(1)	0.0531(5)
Si6	-0.1856(1)	-0.2359(1)	0.81110(8)	0.0549(6)
01	0.3755(3)	-0.1585(3)	0.8436(2)	0.061(2)
02	0.1578(3)	-0.4436(3)	0.8992(3)	0.086(2)
03	-0.1616(2)	-0.2397(2)	0.5241(2)	0.045(1)
N1 ND	0.1656(3)	~0.0618(3)	0.7461(2)	0.033(1)
N2 N3	-0.1831(3)	-0.0259(2)	0.6017(2)	0.028(1)
N4	0.0166(3)	-0.2066(2)	0.5368(2)	0.032(1)
N5	0.2235(3)	-0.2263(2)	0.6340(2)	0.032(1)
N6	0.0499(3)	-0.2227(3)	0.7652(2)	0.036(2)
C1	0.1049(3)	0.1273(3)	0.6932(2)	0.030(2)
C2	0.1387(3)	0.0291(4)	0.7232(2)	0.030(2)
C3	0.0282(4)	0.3182(3)	0.7514(4)	0.081(3)
C4	0.2380(4)	0.2150(4)	0.7134(3)	0.074(3)
C5 C6	0.1656(4)	0.1191(4)	0.8698(3)	0.076(3)
C7	-0.0309(3)	0.0427(3)	0.7230(3)	0.031(2)
C8	-0.2278(4)	0.0402(4)	0.8665(3)	0.069(2)
C9	-0.0133(4)	-0.0612(4)	0.9106(3)	0.066(2)
C10	-0.1239(4)	0.1638(3)	0.8495(3)	0.067(2)
C11	-0.2808(3)	0.1095(3)	0.5784(3)	0.032(2)
C12	-0.2333(3)	0.0434(3)	0.5315(3)	0.028(2)
C13	-0.4760(4)	0.2644(4)	0.4800(3)	0.079(3)
C14	-0.4485(5)	0.2437(5)	0.6661(4)	0.107(3)
C15 C16	-0.4690(4)	-0.2670(2)	0.6131(5)	0.125(4) 0.020(2)
C17	0.1817(3)	-0.20,9(3)	0.4390(2)	0.030(2)
C18	0.2724(6)	-0.4266(5)	0.3442(4)	0.173(4)
C19	0.3601(5)	-0.4408(4)	0.5002(5)	0.138(4)
C20	0.1971(6)	-0.4848(4)	0.5093(5)	0.173(5)
C21	0.3034(3)	-0.3241(3)	0.7835(3)	0.038(2)
C22	0.2667(3)	-0.2775(3)	0.7045(3)	0.034(2)
C23	0.4179(4)	-0.5125(4)	0.9227(3)	0.090(3)
C24	0.4541(5)	$-0.52_2(4)$	0.7431(4)	0.101(3)
C25	-0.1241(3)	-0.4076(4)	0.8135(3) 0.7306(3)	0.032(3)
C27	-0.0343(4)	-0.2056(3)	0.7516(3)	0.034(2)
C28	-0.1364(4)	-0.2672(4)	0.9223(3)	0.083(3)
C29	-0.1809(6)	-0.3526(4)	0.7971(4)	0.121(4)
C30	-0.3193(4)	-0.1476(5)	0.8097(3)	0.108(3)
C31	0.4315(5)	-0.1165(5)	0.7919(5)	0.107(4)
032	0.4081(5)	-0.0959(5)	0.7026(4)	0.100(3)
C34	0.3954(5)	-0.1828(5) -0.2248(6)	0.9330(5)	0.097(3)
C35	0.1530(6)	-0.5174(5)	0.8662(5)	0.127(4)
C36	0.1581(6)	-0.4920(5)	0.7753(4)	0.134(4)
C37	0.1566(6)	-0.4640(5)	0.9875(5)	0.125(4)
C38	0.1561(6)	-0.3784(6)	1.0166(4)	0.137(4)
C39	-0.2570(4)	-0.2351(5)	0.5389(4)	0.086(3)
C40	-0.3230(4)	-0.1422(5)	0.5487(4)	0.111(3)
C41 C42	-0.0910(4)	-0.3369(4)	0.5110(3)	0.070(3)
Lil	-0.0478(8)	-0.4109(5)	0.5960(4)	0.109(3)
Li2	-0.1834(6)	-0.0229(5)	0.6896(5)	0.044(3)
Li3	-0.2059(5)	0.1626(5)	0.6376(4)	0.037(3)
Li4	-0.1068(6)	-0.1867(6)	0.5995(5)	0.047(3)
Li5	0.0831(5)	-0.1966(5)	0.6381(4)	0.036(3)
L16	0.2848(6)	-0.1839(5)	0.7955(5)	0.045(3)
111/ Tio	0.1373(6)	0.1319(5) -0.0700(E)	0.5613(5)	0.051(3)
Lio	0.1091(2)	-0.0790(5)	0.0241(4)	0.036(3)
Lilo	-0.0437(6)	0.1679(5)	0.51/4(4) 0.6671(4)	0.042(3)
Lill	0.0642(6)	-0.1072(5)	0.7750(4)	0.043(3)
Li12	0.1735(6)	-0.3357(5)	0.8204(5)	0.049(3)
C43	0.4664(7)	0.0582(5)	0.9890(5)	0.141(5)
C44	0.4573(7)	0.1201(6)	0.9121(5)	0.159(6)
C45	0.4024(6)	0.2272(6)	0.8908(5)	0.192(6)

Kristallstrukturanalyse von $[(2)_{12}(Et_2O)_6(C_6H_{14})]$: $(C_5H_9NSi)_{12}$ $(C_4H_{10}O)_6 (C_6H_{14});$ Molmasse 2032.11; Kristallgröße 0.25 × 0.25 × 0.35 mm; triklin; $P\overline{1}$; a = 1557.4(2), b = 1567.8(1), c = 1625.7(1)pm; $\alpha = 74.01(1)$, $\beta = 84.38(1)$, $\gamma = 61.32(1)^{\circ}$; Z = 1 (kristallographisches Inversionszentrum); $d(ber) = 1.009 \text{ g} \cdot \text{cm}^{-3}$; Cu-K_a-Strahlung; 7156 gemessene Reflexe; (Θ : 2-50°); 5184 symmetrie-

unabhängige Reflexe mit $F_o > 3\sigma(F_o)$ wurden für die Verfeinerung benutzt. Strukturlösung mit direkten Methoden (SHELXS-86); 1000 verfeinerte Parameter (SHELX 76); Verfeinerung bis R =0.0575, $R_w = 0.0489$; anisotrope Temperaturfaktoren für die Nichtwasserstoff-Atome; H-Atome auf berechneten Lagen "reitend" mit festen isotropen Temperaturfaktoren¹⁸⁾, Atomkoordinaten und äquivalente Temperaturfaktoren siehe Tab. 4.

CAS-Registry-Nummern

1: 18293-53-3 / 2: 119596-38-2 / (2)₁₂(Et₂O)₆: 119619-11-3(2)₁₂(Et₂O)₆(C₆H₁₄): 119637-87-5 / Chlortrimethylsilan: 75-77-4 / Chloracetonitril: 107-14-2 / Monoanion: 70980-14-2

- ¹⁾ NaC(CN)₃: P. Andersen, B. Klewe, E. Thom, Acta Chem. Scand. 21 (1969) 1530.
- ²⁾ KC(CN)₃: J. R. Witt, D. Britton, Acta Crystallogr., Sect. B, 27 (1971) 1835.
- ³⁾ KC(NO₂)₂CN: B. Klewe, Acta Chem. Scand. 26 (1972) 1921.
- ⁴⁾ KCH(CN)₂: B. Klewe, Univ. Oslo; Privatmitteilung, zit. in Lit.⁶⁾. ⁵ [Li(tmeda)(PhCHCN)]₂: G. Boche, M. Marsch, K. Harms, An-gew. Chem. **98** (1986) 373; Angew. Chem. Int. Ed. Engl. **25** (1986)
- 373.
- ⁶¹ [LiCH(CN)₂(hmpt)]_∞: K. Jens, J. Kopf, N. P. Lorenzen, E. Weiss, Chem. Ber. **121** (1988) 1201.
- ⁷) [LiC(CN)CH₂C(CH₃)₂(thf)]_x: G. Boche, K. Harms, M. Marsch, J. Am. Chem. Soc. 110 (1988) 6925.

 $[LiC(CN)(\rho-CH_3OC_6H_4)(Et_2O)]_{correct}$

M. Marsch, P. Gerdes, D. Enders, G. Boche, unveröffentlichte Ergebnisse; s. auch G. Boche, Angew. Chem. 101 (1989) 286; Angew. Chem. Int. Ed. Engl. 28 (1989) 277.

- ⁹⁾ P. J. Crowley, M. R. Leach, O. Meth-Cohn, B. J. Wakefield, Tetrahedron Lett. 27 (1986) 2909, und dort zit. Literatur.
- ¹⁰⁾ S. Brenner, M. Bovete, *Tetrahedron* **31** (1975) 153. ¹¹⁾ R. V. Stephens, M. P. Wentland, *J. Am. Chem. Soc.* **90** (1968) 5580.
- ¹²⁾ S. Brenner, M. Bovete, Tetrahedron Lett. 15 (1974) 1377
- ¹³⁾ G. A. Gornowicz, R. West, J. Am. Chem. Soc. 93 (1971) 1714. In dieser Publikation wird auch die Herstellung von Li2CHCN aus CH₃CN und zwei Moläquiv. tBuLi beschrieben.
- ¹⁴⁾ H.-H. Vogt, R. Gompper, Chem. Ber. 114 (1981) 2884, geben ¹³C-NMR-Signale von LiNaC(CN)₂ an.
- ¹⁵⁾ [{ $Li_2(Me_3SiCSO_2C_6H_5)$ }₆(Li_2O)(thf)₁₀]: H.-J. Gais, J. Vollhardt, H. Günther, D. Moskau, H. J. Lindner, S. Braun, J. Am. Chem. Soc. 110 (1988) 978; siehe auch J. Vollhardt, H.-J. Gais, K. L. Lukas, Angew. Chem. 97 (1985) 695; Angew. Chem. Int. Ed. Engl. 24 (1985) 696.
- ¹⁶⁾ Über die Festkörperstruktur von $Li_2C(C \equiv C tBu)_2$ wird in einem Übersichtsartikel berichtet; W. N. Setzer, P. v. R. Schleyer, Adv. Organomet. Chem. 24 (1985) 353.
- ¹⁷⁾ Eine Zusammenfassung über polylithierte aliphatische Kohlenwasserstoffe verfaßten A. Maercker, M. Theis, Top. Curr. Chem. **138** (1987) 1.
- ¹⁸⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53653, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ¹⁹ R. R. Naqvi, P. J. Wheatley, J. Chem. Soc. A, 1970, 2053; J. Lambrecht, B. Gambke, J. v. Seyerl, G. Huttner, G. Kollmanns-berger von Nell, S. Herzberger, J. C. Jochims, *Chem. Ber.* **114** (1981) 3751. ^{20) 13}C-NMR ([D₈]THF, Raumtemp.): $\delta = 152.8$ (s, CN), 2.5 [q, Si(CH₃)₃, ¹J_{CH} = 117 Hz], -1.9 (d, CH, ¹J_{CH} = 147 Hz): W.
- Zarges, geplante Dissertation, Universität Marburg. [19/89]